Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1564, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378682

RESUMEN

Although FOXP3+ regulatory T cells (Treg) depend on IL-2 produced by other cells for their survival and function, the levels of IL-2 in inflamed tissue are low, making it unclear how Treg access this critical resource. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing monoclonal antibody-directed chimeric antigen receptor (mAbCAR) Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their ability to suppress neuroinflammation in vivo. Together, these data identify a role for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Linfocitos T Reguladores , Ratones , Animales , Humanos , Interleucina-2/metabolismo , Glucuronidasa/genética , Glucuronidasa/metabolismo , Matriz Extracelular/metabolismo , Heparitina Sulfato/metabolismo
2.
Cell Rep ; 42(12): 113494, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38085642

RESUMEN

Antigen-specific T cells traffic to, are influenced by, and create unique cellular microenvironments. Here we characterize these microenvironments over time with multiplexed imaging in a melanoma model of adoptive T cell therapy and human patients with melanoma treated with checkpoint inhibitor therapy. Multicellular neighborhood analysis reveals dynamic immune cell infiltration and inflamed tumor cell neighborhoods associated with CD8+ T cells. T cell-focused analysis indicates T cells are found along a continuum of neighborhoods that reflect the progressive steps coordinating the anti-tumor immune response. More effective anti-tumor immune responses are characterized by inflamed tumor-T cell neighborhoods, flanked by dense immune infiltration neighborhoods. Conversely, ineffective T cell therapies express anti-inflammatory cytokines, resulting in regulatory neighborhoods, spatially disrupting productive T cell-immune and -tumor interactions. Our study provides in situ mechanistic insights into temporal tumor microenvironment changes, cell interactions critical for response, and spatial correlates of immunotherapy outcomes, informing cellular therapy evaluation and engineering.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Linfocitos T CD8-positivos , Inmunoterapia/métodos , Citocinas , Inmunidad , Microambiente Tumoral
3.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909599

RESUMEN

FOXP3+ regulatory T cells (Treg) depend on exogenous IL-2 for their survival and function, but circulating levels of IL-2 are low, making it unclear how Treg access this critical resource in vivo. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their tolerogenic function in vivo. Together, these data identify novel roles for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.

4.
Sci Adv ; 9(3): eadd1166, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662860

RESUMEN

Although literature suggests that resistance to TNF inhibitor (TNFi) therapy in patients with ulcerative colitis (UC) is partially linked to immune cell populations in the inflamed region, there is still substantial uncertainty underlying the relevant spatial context. Here, we used the highly multiplexed immunofluorescence imaging technology CODEX to create a publicly browsable tissue atlas of inflammation in 42 tissue regions from 29 patients with UC and 5 healthy individuals. We analyzed 52 biomarkers on 1,710,973 spatially resolved single cells to determine cell types, cell-cell contacts, and cellular neighborhoods. We observed that cellular functional states are associated with cellular neighborhoods. We further observed that a subset of inflammatory cell types and cellular neighborhoods are present in patients with UC with TNFi treatment, potentially indicating resistant niches. Last, we explored applying convolutional neural networks (CNNs) to our dataset with respect to patient clinical variables. We note concerns and offer guidelines for reporting CNN-based predictions in similar datasets.


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/complicaciones , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Inflamación/complicaciones , Biomarcadores
5.
Sci Adv ; 8(26): eabn9440, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776791

RESUMEN

A patient-tailored, ex vivo drug response platform for glioblastoma (GBM) would facilitate therapy planning, provide insights into treatment-induced mechanisms in the immune tumor microenvironment (iTME), and enable the discovery of biomarkers of response. We cultured regionally annotated GBM explants in perfusion bioreactors to assess iTME responses to immunotherapy. Explants were treated with anti-CD47, anti-PD-1, or their combination, and analyzed by multiplexed microscopy [CO-Detection by indEXing (CODEX)], enabling the spatially resolved identification of >850,000 single cells, accompanied by explant secretome interrogation. Center and periphery explants differed in their cell type and soluble factor composition, and responses to immunotherapy. A subset of explants displayed increased interferon-γ levels, which correlated with shifts in immune cell composition within specified tissue compartments. Our study demonstrates that ex vivo immunotherapy of GBM explants enables an active antitumoral immune response within the tumor center and provides a framework for multidimensional personalized assessment of tumor response to immunotherapy.

6.
JCI Insight ; 7(12)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35730564

RESUMEN

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e., resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percentages of solids and protein content were greatly elevated in COVID-19 compared with heathy control samples and closely resembled levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) were major components of respiratory secretions in COVID-19 and were likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors, with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observed increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factor-stimulated gene-6 staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicated that increases in HA and DNA in COVID-19 respiratory secretion samples correlated with enhanced inflammatory burden and suggested that DNA and HA may be viable therapeutic targets in COVID-19 infection.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Pulmón , SARS-CoV-2 , Esputo
7.
Immunity ; 55(6): 1118-1134.e8, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35447093

RESUMEN

Understanding the mechanisms of HIV tissue persistence necessitates the ability to visualize tissue microenvironments where infected cells reside; however, technological barriers limit our ability to dissect the cellular components of these HIV reservoirs. Here, we developed protein and nucleic acid in situ imaging (PANINI) to simultaneously quantify DNA, RNA, and protein levels within these tissue compartments. By coupling PANINI with multiplexed ion beam imaging (MIBI), we measured over 30 parameters simultaneously across archival lymphoid tissues from healthy or simian immunodeficiency virus (SIV)-infected nonhuman primates. PANINI enabled the spatial dissection of cellular phenotypes, functional markers, and viral events resulting from infection. SIV infection induced IL-10 expression in lymphoid B cells, which correlated with local macrophage M2 polarization. This highlights a potential viral mechanism for conditioning an immunosuppressive tissue environment for virion production. The spatial multimodal framework here can be extended to decipher tissue responses in other infectious diseases and tumor biology.


Asunto(s)
Infecciones por VIH , Ácidos Nucleicos , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD4-Positivos , Virus ADN , Terapia de Inmunosupresión , Macaca mulatta , Macrófagos , Virus de la Inmunodeficiencia de los Simios/fisiología , Carga Viral
8.
medRxiv ; 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35411348

RESUMEN

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We find the percent solids and protein content are greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibit heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observe increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factorâ€"stimulated gene-6 (TSG6) staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicate that increases in HA and DNA in COVID-19 respiratory secretion samples correlate with enhanced inflammatory burden and suggest that DNA and HA may be viable therapeutic targets in COVID-19 infection.

9.
BMC Bioinformatics ; 23(1): 46, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042474

RESUMEN

BACKGROUND: Algorithmic cellular segmentation is an essential step for the quantitative analysis of highly multiplexed tissue images. Current segmentation pipelines often require manual dataset annotation and additional training, significant parameter tuning, or a sophisticated understanding of programming to adapt the software to the researcher's need. Here, we present CellSeg, an open-source, pre-trained nucleus segmentation and signal quantification software based on the Mask region-convolutional neural network (R-CNN) architecture. CellSeg is accessible to users with a wide range of programming skills. RESULTS: CellSeg performs at the level of top segmentation algorithms in the 2018 Kaggle Data Challenge both qualitatively and quantitatively and generalizes well to a diverse set of multiplexed imaged cancer tissues compared to established state-of-the-art segmentation algorithms. Automated segmentation post-processing steps in the CellSeg pipeline improve the resolution of immune cell populations for downstream single-cell analysis. Finally, an application of CellSeg to a highly multiplexed colorectal cancer dataset acquired on the CO-Detection by indEXing (CODEX) platform demonstrates that CellSeg can be integrated into a multiplexed tissue imaging pipeline and lead to accurate identification of validated cell populations. CONCLUSION: CellSeg is a robust cell segmentation software for analyzing highly multiplexed tissue images, accessible to biology researchers of any programming skill level.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Algoritmos , Fluorescencia , Programas Informáticos
10.
Cell Syst ; 13(2): 109-130.e6, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34653369

RESUMEN

A schematic of a biological system, i.e., a representation of its pieces, how they are combined, and what they do, would facilitate understanding its essential organization and alteration in pathogenesis or evolution. We present a computational approach for constructing tissue schematics (TSs) from high-parameter imaging data and a biological model for interpreting them. TSs map the spatial assembly of cellular neighborhoods into tissue motifs, whose modular composition, we propose, enables the generation of complex outputs. We developed our approach in human lymphoid tissue (HLT), identifying the follicular outer zone as a potential relay between neighboring zones and a core lymphoid assembly with modifications characteristic of each HLT type. Applying the TS approach to the tumor microenvironment in human colorectal cancer identified a higher-order motif, whose mutated assembly was negatively associated with patient survival. TSs may therefore elucidate how immune architectures can be specialized and become vulnerable to reprogramming by tumors.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Modelos Biológicos , Neoplasias/patología
11.
Nat Commun ; 12(1): 6726, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795254

RESUMEN

Cutaneous T cell lymphomas (CTCL) are rare but aggressive cancers without effective treatments. While a subset of patients derive benefit from PD-1 blockade, there is a critically unmet need for predictive biomarkers of response. Herein, we perform CODEX multiplexed tissue imaging and RNA sequencing on 70 tumor regions from 14 advanced CTCL patients enrolled in a pembrolizumab clinical trial (NCT02243579). We find no differences in the frequencies of immune or tumor cells between responders and non-responders. Instead, we identify topographical differences between effector PD-1+ CD4+ T cells, tumor cells, and immunosuppressive Tregs, from which we derive a spatial biomarker, termed the SpatialScore, that correlates strongly with pembrolizumab response in CTCL. The SpatialScore coincides with differences in the functional immune state of the tumor microenvironment, T cell function, and tumor cell-specific chemokine recruitment and is validated using a simplified, clinically accessible tissue imaging platform. Collectively, these results provide a paradigm for investigating the spatial balance of effector and suppressive T cell activity and broadly leveraging this biomarker approach to inform the clinical use of immunotherapies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Inmunoterapia/métodos , Linfoma Cutáneo de Células T/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias Cutáneas/terapia , Anciano , Antineoplásicos Inmunológicos/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Femenino , Humanos , Estimación de Kaplan-Meier , Activación de Linfocitos/inmunología , Linfoma Cutáneo de Células T/inmunología , Linfoma Cutáneo de Células T/metabolismo , Masculino , Persona de Mediana Edad , Micosis Fungoide/inmunología , Micosis Fungoide/metabolismo , Micosis Fungoide/terapia , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Síndrome de Sézary/inmunología , Síndrome de Sézary/metabolismo , Síndrome de Sézary/terapia , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Resultado del Tratamiento
12.
Nat Commun ; 12(1): 4628, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330905

RESUMEN

Simultaneous visualization of the relationship between multiple biomolecules and their ligands or small molecules at the nanometer scale in cells will enable greater understanding of how biological processes operate. We present here high-definition multiplex ion beam imaging (HD-MIBI), a secondary ion mass spectrometry approach capable of high-parameter imaging in 3D of targeted biological entities and exogenously added structurally-unmodified small molecules. With this technology, the atomic constituents of the biomolecules themselves can be used in our system as the "tag" and we demonstrate measurements down to ~30 nm lateral resolution. We correlated the subcellular localization of the chemotherapy drug cisplatin simultaneously with five subnuclear structures. Cisplatin was preferentially enriched in nuclear speckles and excluded from closed-chromatin regions, indicative of a role for cisplatin in active regions of chromatin. Unexpectedly, cells surviving multi-drug treatment with cisplatin and the BET inhibitor JQ1 demonstrated near total cisplatin exclusion from the nucleus, suggesting that selective subcellular drug relocalization may modulate resistance to this important chemotherapeutic treatment. Multiplexed high-resolution imaging techniques, such as HD-MIBI, will enable studies of biomolecules and drug distributions in biologically relevant subcellular microenvironments by visualizing the processes themselves in concert, rather than inferring mechanism through surrogate analyses.


Asunto(s)
Azepinas/metabolismo , Cisplatino/metabolismo , Espacio Intracelular/metabolismo , Espectrometría de Masa de Ion Secundario/métodos , Triazoles/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Azepinas/farmacocinética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Cisplatino/farmacocinética , Citoplasma/metabolismo , Células HeLa , Humanos , Células Jurkat , Microscopía Confocal , Triazoles/farmacocinética
13.
Eur J Immunol ; 51(5): 1262-1277, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548142

RESUMEN

Multiparameter tissue imaging enables analysis of cell-cell interactions in situ, the cellular basis for tissue structure, and novel cell types that are spatially restricted, giving clues to biological mechanisms behind tissue homeostasis and disease. Here, we streamlined and simplified the multiplexed imaging method CO-Detection by indEXing (CODEX) by validating 58 unique oligonucleotide barcodes that can be conjugated to antibodies. We showed that barcoded antibodies retained their specificity for staining cognate targets in human tissue. Antibodies were visualized one at a time by adding a fluorescently labeled oligonucleotide complementary to oligonucleotide barcode, imaging, stripping, and repeating this cycle. With this we developed a panel of 46 antibodies that was used to stain five human lymphoid tissues: three tonsils, a spleen, and a LN. To analyze the data produced, an image processing and analysis pipeline was developed that enabled single-cell analysis on the data, including unsupervised clustering, that revealed 31 cell types across all tissues. We compared cell-type compositions within and directly surrounding follicles from the different lymphoid organs and evaluated cell-cell density correlations. This sequential oligonucleotide exchange technique enables a facile imaging of tissues that leverages pre-existing imaging infrastructure to decrease the barriers to broad use of multiplexed imaging.


Asunto(s)
Anticuerpos , Histocitoquímica/métodos , Imagen Molecular/métodos , Oligonucleótidos , Comunicación Celular , Recuento de Células , Humanos , Hibridación in Situ/métodos , Tejido Linfoide , Especificidad de Órganos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de la Célula Individual/métodos
14.
medRxiv ; 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32935110

RESUMEN

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percent solids and protein content are all greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis (CF), a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. These results highlight the dramatic biophysical properties of COVID-19 respiratory secretions and suggest that DNA and hyaluronan may be viable therapeutic targets in COVID-19 infection.

15.
Matrix Biol ; 96: 69-86, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33290836

RESUMEN

A coat of pericellular hyaluronan surrounds mature dendritic cells (DC) and contributes to cell-cell interactions. We asked whether 4-methylumbelliferone (4MU), an oral inhibitor of HA synthesis, could inhibit antigen presentation. We find that 4MU treatment reduces pericellular hyaluronan, destabilizes interactions between DC and T-cells, and prevents T-cell proliferation in vitro and in vivo. These effects were observed only when 4MU was added prior to initial antigen presentation but not later, consistent with 4MU-mediated inhibition of de novo antigenic responses. Building on these findings, we find that 4MU delays rejection of allogeneic pancreatic islet transplant and allogeneic cardiac transplants in mice and suppresses allogeneic T-cell activation in human mixed lymphocyte reactions. We conclude that 4MU, an approved drug, may have benefit as an adjunctive agent to delay transplantation rejection.


Asunto(s)
Células Dendríticas/citología , Rechazo de Injerto/prevención & control , Ácido Hialurónico/biosíntesis , Himecromona/administración & dosificación , Linfocitos T Reguladores/citología , Animales , Presentación de Antígeno/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Rechazo de Injerto/inmunología , Trasplante de Corazón/efectos adversos , Humanos , Himecromona/farmacología , Leucocitos/citología , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Ratones , Trasplante de Páncreas/efectos adversos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Trasplante Homólogo
17.
Cell ; 182(5): 1341-1359.e19, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32763154

RESUMEN

Antitumoral immunity requires organized, spatially nuanced interactions between components of the immune tumor microenvironment (iTME). Understanding this coordinated behavior in effective versus ineffective tumor control will advance immunotherapies. We re-engineered co-detection by indexing (CODEX) for paraffin-embedded tissue microarrays, enabling simultaneous profiling of 140 tissue regions from 35 advanced-stage colorectal cancer (CRC) patients with 56 protein markers. We identified nine conserved, distinct cellular neighborhoods (CNs)-a collection of components characteristic of the CRC iTME. Enrichment of PD-1+CD4+ T cells only within a granulocyte CN positively correlated with survival in a high-risk patient subset. Coupling of tumor and immune CNs, fragmentation of T cell and macrophage CNs, and disruption of inter-CN communication was associated with inferior outcomes. This study provides a framework for interrogating how complex biological processes, such as antitumoral immunity, occur through concerted actions of cells and spatial domains.


Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Invasividad Neoplásica/inmunología , Antígeno B7-H1/inmunología , Biomarcadores de Tumor/inmunología , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Femenino , Humanos , Inmunoterapia/métodos , Masculino , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA